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Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 Online auction fraud 

 Accounting fraud 

 Fake review spam 

 Web spam  
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Collective classification (CC) 

 Anomaly detection as a classification problem 

 spam/non-spam email, malicious/benign web page, 

fraud/legitimate transaction, etc. 

 Often connected objects  guilt-by-association 

 Label of object o in network may depend on: 

 Attributes (features) of o 

 Labels of objects in o’s neighborhood 

 Attributes of objects in o’s neighborhood 

 CC: simultaneous classification of interlinked 

objects using above correlations 
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Problem sketch 
 Graph (V, E) 

 Nodes as variables 

 X: observed 

 Y: TBD 

 Edges 

 observed relations 

 Goal: label Y nodes  

 

 

 

 

 

 

nodes; web pages, edges; hyperlinks, labels; SH or CH: 

student/course page; features nodes are keywords; ST: 

student, CO: course, CU:  curriculum, AI: artificial intelligence 
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Chakrabarti+’98,  
Taskar+’02 

Collective classification applications 

 Document classification 

 Part of speech tagging 

 Link prediction 

 Optical character recognition 

 Image/3Ddata segmentation 

 Entity resolution in sensor networks 

 Spam and fraud detection 

Lafferty+’01 

Taskar+’03 

Taskar+’03 

Anguelov+’05,   
Chechetka+’10 

Chen+’03 

Pandit+’07, Kang+’11 
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Collective classification models 

 Relational Markov Networks (RMNs) 

 Relational Dependency Networks (RDNs) 

 Probabilistic Relational Models (PRMs) 

 Markov Logic Networks (MLNs) 

Taskar, Abbeel, Koller’03 

Neville&Jensen’07 

Richardson&Domingos’06 

Friedman, Getoor, Koller, Pfeffer+’99 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 167 



Collective classification inference 
 Exact inference is NP hard for arbitrary networks 

 Approximate inference techniques [in this tutorial]  

 Relational classifier 

 

 Iterative classification alg. (ICA) 

 

 Gibbs sampling IC 

 

 Loopy belief propagation 

 

Note: All the above are iterative 

Gilks et al. ‘96 

Yedidia et al. ‘00 

Neville&Jensen’00, Lu&Getoor’03, McDowell+’07 

Macskassy&Provost’03,07 
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(prob.) Relational network classifier 
 “A simple relational classifier” 

 Class probability of Yi is a weighted average 

of class probabilities of its neighbors 

 Repeat for each Yi  and label c 

 

 

 pRN challenges: 
 Convergence not guaranteed 

 Some initial class probabilities should be biased 

or no propagation  

 Cannot use attribute info 

Macskassy&Provost’03 
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Iterative classification 
 Main idea: classify node Yi based on its 

attributes as well as neighbor set Ni’s labels 

 Convert each node Yi to a flat vector ai  

 Various #neighbors  aggregation 

 count 

 mode 

 proportion 

 mean 

 exists 
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Iterative classification 

count 

a1
t=0 

a2
t=0 
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Iterative classification 
 Main idea: classify Yi based on Ni 

 Convert each node Yi to a flat vector ai 

 Various #neighbors  aggregation 

 Use local classifier f(ai) (e.g., SVM, kNN, …) 

to compute best value for yi 

 Repeat for each node Yi 

 Reconstruct feature vector ai  

 Update label to f(ai)   (hard assignment) 

 Until class labels stabilize or max # iterations 

Note: convergence not guaranteed 
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Iterative classification 

a1
t=1 

f(a2
t=0)=CH 

f(a1
t=1)=SH 

1 

2 
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Iterative classification 

a2
t=1 

f(a2
t=1)=CH 

f(a1
t=1)=SH 

1 

1 
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Gibbs sampling 

 Main idea: 

 Convert each node Yi to a flat vector ai 

 Use local classifier f(ai) to compute best value 

for yi 

 Repeat B times for each node Yi 

 Reconstruct feature vector ai  

 Update label to f(ai)   (hard assignment) 

 Repeat S times for each node Yi 

 Sample yi from f(ai) 

 Increase count c(i, yi) by 1 

 Assign to each Yi label 
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IC and GS challenges 
 Feature construction for local classifier f 

 f often needs fixed-length vector 

 choice of aggregation (avg, mode, count, …) 

 choice of relations (in-, out-links, both) 

 choice of neighbor attributes (all?, top-k confident?) 

 Local classifier f 

 requires training 

 choice of classifier (LR, NB, kNN, SVM, …) 

 Node ordering for updates (random, diversity based) 

 Convergence 

 Run time (many iterations for GS) 
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Collective classification inference 
 Exact inference is NP hard for arbitrary networks 

 Approximate inference techniques [in this tutorial]  

 Relational classifier 

 

 Iterative classification alg. (ICA) 

 

 Gibbs sampling IC 

 

 Loopy belief propagation 

 

Note: All the above are iterative 

Gilks et al. ‘96 

Yedidia et al. ‘00 

Neville&Jensen’00, Lu&Getoor’03, McDowell+’07 

Macskassy&Provost’03,07 
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Relational Markov Nets 
 Undirected dependencies 

 Potentials on cliques of size 1 

 Potentials on cliques of size 2  

 (label-attribute) 

 (label-observed label) 

 (label-label) 

 

For pairwise  
RMNs max  
clique size is 2 
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pairwise Markov Random Field 

 For an assignment y to all unobserved Y, 

pMRF is associated with probability distr: 

Node labels as  
random variables 

compatibility  
potentials 
(label-label) 

prior belief 
(1-clique potentials) 

observed potentials 
(label-observed label) 
(label-attribute) 

“known” 
potential 
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pMRF interpretation 

 Defines a joint pdf of all unknown labels 

 P(y | x) is the probability of a given world y 

 Best label yi for Yi is the one with highest 

marginal probability 

 Computing one marginal probability P(Yi = yi) 

requires summing over exponential # terms 

 #P problem  approximate inference  

loopy belief propagation 
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Loopy belief propagation 
 Invented in 1982 [Pearl] to calculate marginals 

in Bayes nets. 

 Also used to estimate marginals (=beliefs), or 

most likely states (e.g. MAP) in MRFs 

 Iterative process in which neighbor variables 

“talk” to each other, passing messages 

 

 

 

 When consensus reached, calculate belief 

 “I (variable x1) believe      
you (variable x2) belong                                                                          

in these states with                                                                      
various likelihoods…” 
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Loopy belief propagation 

 

 

i 

2) Repeat for each node:  

3) When messages “stabilize”: 

j 

k 

k 

k 

1) Initialize all messages to 1 

details 
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m12(SH) = (0.0096*0.9+0.0216*0.1) / (m12(SH) + m12(CH)) ~0.35 

m12(CH) = (0.0096*0.1+0.0216*0.9) / (m12(SH) + m12(CH)) ~0.65  
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Loopy belief propagation 

Advantages: 

 Easy to program & parallelize 

 General: can apply to any graphical model w/ any 

form of potentials (higher order than pairwise) 

Challenges: 

 Convergence is not guaranteed (when to stop) 

 esp. if many closed loops 

 Potential functions  (parameters) 

 require training to estimate 

 learning by gradient-based optimization: 

convergence issues during training 
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Taxonomy 
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Fraud detection 

Spam detection 



Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 (1) Online auction fraud 

 (2) Accounting fraud 

 (3) Fake review spam 

 (4) Web spam  
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(1) Online auction fraud 

 Auction sites: attractive target for fraud 

 63% complaints to Federal Internet Crime 

Complaint Center in U.S. in 2006 

 Average loss per incident: = $385 

 Often non-delivery fraud: 

Chau et al. ’06 

$$$ 

Seller Buyer 
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Online auction fraud detection 

 Insufficient solution: 

 Look at individual features, geographic locations, 

login times, session history, etc. 

 

 Harder to fake: graph structure 

 Capture relationships between users 

 

 Q: How do fraudsters interact with other 

 users and among each other? 

   in addition to buy/sell relations, there is a 

      feedback mechanism 
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Feedback mechanism 

 Each user has a reputation score 

 Users rate each other via feedback 

 

 

 

 

 

 

 Q: How do fraudsters game the feedback 

 system? 

$$$ 

Reputation score:  

     70 + 1 = 71 

Reputation score:  

     15 - 1 = 14 
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Auction “roles” 

 Do they boost each                                       

other’s reputation?  

 

 

 They form near-bipartite                                   

cores (2 roles) 

     accomplice 

 trades w/ honest, looks legit 

     fraudster 
 trades w/ accomplice 

 fraud w/ honest 
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Detecting online fraud 

 How to find near-bipartite cores? How to find 

roles (honest, accomplice, fraudster)? 

 Use Belief Propagation!  

 How to set BP parameters (potentials)? 

 prior beliefs: prior knowledge, unbiased if none  

 compatibility potentials: by insight 
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BP in action 
Initialize prior beliefs of 

fraudsters to P(f)=1 

Initialize 

other 

nodes as 

unbiased 

At each iteration, for each 

node, compute messages to 

its neighbors 

Compute beliefs, 

use most likely state 

Continue till 

“convergence” 
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Computing beliefs  roles 

A 

C 

B 

E 

D 

P(honest) 
P(accomplice) 

P(fraudster) 
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(2) Accounting fraud 

 Problem: Given accounts and their 

transaction relations, find most risky ones 

Cash 
Accounts 
Payable 

Inventory 

Bad Debt 

Non-Trade 
A/R 

Accounts 
Receivable 

Revenue 
Orange Cty 

Revenue Los 
Angeles 

Revenue San 
Diego 

Revenue San 
Francisco 

Revenue 
Other 

McGlohon et al. ’09 
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Accounting fraud detection 

 Domain knowledge to flag certain nodes 

 

 Assume homophily (“guilt by association”) 

 

 

 Use belief propagation 

 2 states (risky R, normal NR) 

 final beliefs  end risk scores 

 

prior beliefs 

compatibility potentials 
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Social Network Analytic Risk Evaluation 
 
 Prior beliefs (noisy domain knowledge) 

 

 

 

 

 

 Compatibility potentials                                           

(by homophily) 

Many late 
postings 

Round-dollar 
entries 

Large number 
of returns 

Many entries 
reversed late in 

period 

f 

# Flags 
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Social Network Analytic Risk Evaluation 
 Before After 

False positive rate 

True 

positive 

rate 

SNARE 

Baseline (flags only) 

Focus on staff 
posting to A/R 

from headquarters 

Ignore, no 
corroborating 

evidence 

1380 accounts 

3820 transactions 
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(3) Fake review spam 

 Review sites: attractive target for spam 

 Often hype/defame spam 

 Paid spammers 
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Fake review spam detection 
 Behavioral analysis 

 individual features, geographic locations, login 

times, session history, etc. 

 Language analysis 

 use of superlatives, many self-referencing, rate of 

misspell, many agreement words, … 

 

 Harder to fake: graph structure 

 Capture relationships between                          

reviewers, reviews, stores 

 

[Jindal & Liu’08] 

[Ott et al.’11] 
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Graph-based detection 
[Wang et al. ’11] 

Reviewer r trustiness T(r) 

Honesty Hr 

Trustiness 
T(r) 
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Graph-based detection 

Store s reliability R(s) 

review v rating 
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Graph-based detection 

Review v honesty H(v) 
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Graph-based detection 
Reviewer r trustiness T(r) 

Store s reliability R(s) 

Review v honesty H(v) 
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Graph-based detection 

 Algorithm: iterate trustiness, reliability, and 

honesty scores in a mutual recursion 

 similar to Kleinberg’s HITS algorithm 

 non-linear relations 

 

 Challenges: 

 Convergence not guaranteed 

 Cannot use attribute info 

 Parameters: agreement time window ∆t, review 

similarity threshold (for dis/agreement)  

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 205 



Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 Online auction fraud 

 Accounting fraud 

 Fake review spam 

 Web spam  
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(4) Web spam 

 Spam pages: pages designed to trick search 

engines to direct traffic to their websites 
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Web spam 

 Challenges: 

 pages are not independent 

 what features are relevant? 

 small training set 

 noisy labels (consensus is hard) 

 content very dynamic 
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Web spam 

 Many graph-based solutions 

 TrustRank 

 SpamRank 

 Anti-trustRank 

 Propagating trust and distrust 

 Know your neighbors 

 Guilt-by-association 

 …  

 

[Gyöngyi et al. ’04] 

[Benczur et al. ’05] 

[Krishnan et al. ’06] 

[Wu et al. ’06] 

[Castillo et al. ’07] 

[Kang et al. ’11] 
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Web spam 

 Main idea: exploit homophily and reachability 
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TrustRank: combating web spam 

 Main steps:  

 Find seed set S of “good” pages 

(e.g. using oracle) 

 Compute trust scores by biased 

(personalized) PageRank from 

good pages 

 Intuition: spam pages are 

hardly reachable from 

trustworthy pages 

 Hard to acquire direct inlinks   

from good pages 

[Gyöngyi et al. ’04] 
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TrustRank mathematically 

 Remember PageRank score of a page p: 

 

 

 In closed form: 

 

 

 Personalized PageRank: 

 

damping factor Transition matrix 

1/|S| for S nodes of 
interest (seeds) 

details 
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SpamRank: link spam detection 

 Intuition: PageRank distribution of “good” set of 

supporters should be power law (as in entire Web) 

 Page v is a supporter of page i if: PPRi(v) > 0  

 For each page i 

 get PageRank scores of all supporters of i 

 test PageRank histogram for power law 

 calculate irregularity score s(i)   

 SpamRank  PPR(s) 

Advantage: no user labeling (as for TrustRank) 

[Benczur et al. ’05] 

i 
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“Know your neighbors” 

 Graph-based techniques can help improve 

feature-based classifiers 

 

 

 

 

 

 Graph features: reciprocity, assortativity, 

TrustRank, PageRank, … 

 Content features: fraction visible text, 

compression rate, entropy of trigrams, … 

[Castillo et al. ’07] 

Feature  
Extraction 

Classification Smoothing Propagation 

Stack Graphical 
Learning 

Clustering 
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Smoothing –clustering 
 Split graph into many clusters. (e.g. by METIS) 

 If majority of nodes in cluster are spam, then all 

pages in cluster are spam. 
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Smoothing –propagation 
 Propagate predictions using random walks. 

 PPR(s); s(i): spamicity score by baseline 

classifier (backward and/or forwards steps) 
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Smoothing –stacked learning 

 Create additional features by combining 

predictions for related nodes 

 e.g., avg. spamicity score p of neighbors r(h) of h 

 

 similar to pRN classifier by Macskassy&Provost 

 can repeat, although 1-2 steps add most gain 

h 
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Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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Conclusions 

 Graphs are powerful tools to detect  

 Anomalies 

 Events 

 Fraud/Spam  
  in complex real-world data (attributes,       

  (noisy) side information, weights, …) 

 Nature of the problem highly dependent on 

the application domain 

 Each problem formulation needs a 

different approach 
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Open challenges: research 

 Anomalies in dynamic graphs 

 dynamic attributed graphs (definitions, 

formulations, real-world scenarios) 

 temporal effects: node/edge history (not only 

updates) 

 Fraud/spam detection: system perspective 

 adversarial robustness  

 cost (to system in measurement , to adversary to 

fake, to user in exposure) 

 detection timeliness and other system design 

aspects; e.g. dynamicity, latency 
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Open challenges: practice 

 What makes the results better in practice? 

 better priors? 

 better parameter learning? 

 more data? 

 … 

 Graph construction 

 If no network, what to use to build one? 

 If one network,  

 more latent edges? (e.g. review similarity) 

 less edges? (e.g. domain knowledge) 

 If more than one network, how to exploit all? 
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Q & A 

  leman@cs.stonybrook.edu 

http://www.cs.stonybrook.edu/~leman/ 
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