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Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 Online auction fraud 

 Accounting fraud 

 Fake review spam 

 Web spam  
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Collective classification (CC) 

 Anomaly detection as a classification problem 

 spam/non-spam email, malicious/benign web page, 

fraud/legitimate transaction, etc. 

 Often connected objects  guilt-by-association 

 Label of object o in network may depend on: 

 Attributes (features) of o 

 Labels of objects in o’s neighborhood 

 Attributes of objects in o’s neighborhood 

 CC: simultaneous classification of interlinked 

objects using above correlations 
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Problem sketch 
 Graph (V, E) 

 Nodes as variables 

 X: observed 

 Y: TBD 

 Edges 

 observed relations 

 Goal: label Y nodes  

 

 

 

 

 

 

nodes; web pages, edges; hyperlinks, labels; SH or CH: 

student/course page; features nodes are keywords; ST: 

student, CO: course, CU:  curriculum, AI: artificial intelligence 
L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 164 



Chakrabarti+’98,  
Taskar+’02 

Collective classification applications 

 Document classification 

 Part of speech tagging 

 Link prediction 

 Optical character recognition 

 Image/3Ddata segmentation 

 Entity resolution in sensor networks 

 Spam and fraud detection 

Lafferty+’01 

Taskar+’03 

Taskar+’03 

Anguelov+’05,   
Chechetka+’10 

Chen+’03 

Pandit+’07, Kang+’11 
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Collective classification models 

 Relational Markov Networks (RMNs) 

 Relational Dependency Networks (RDNs) 

 Probabilistic Relational Models (PRMs) 

 Markov Logic Networks (MLNs) 

Taskar, Abbeel, Koller’03 

Neville&Jensen’07 

Richardson&Domingos’06 

Friedman, Getoor, Koller, Pfeffer+’99 
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Collective classification inference 
 Exact inference is NP hard for arbitrary networks 

 Approximate inference techniques [in this tutorial]  

 Relational classifier 

 

 Iterative classification alg. (ICA) 

 

 Gibbs sampling IC 

 

 Loopy belief propagation 

 

Note: All the above are iterative 

Gilks et al. ‘96 

Yedidia et al. ‘00 

Neville&Jensen’00, Lu&Getoor’03, McDowell+’07 

Macskassy&Provost’03,07 
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(prob.) Relational network classifier 
 “A simple relational classifier” 

 Class probability of Yi is a weighted average 

of class probabilities of its neighbors 

 Repeat for each Yi  and label c 

 

 

 pRN challenges: 
 Convergence not guaranteed 

 Some initial class probabilities should be biased 

or no propagation  

 Cannot use attribute info 

Macskassy&Provost’03 
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Iterative classification 
 Main idea: classify node Yi based on its 

attributes as well as neighbor set Ni’s labels 

 Convert each node Yi to a flat vector ai  

 Various #neighbors  aggregation 

 count 

 mode 

 proportion 

 mean 

 exists 
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Iterative classification 

count 

a1
t=0 

a2
t=0 
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Iterative classification 
 Main idea: classify Yi based on Ni 

 Convert each node Yi to a flat vector ai 

 Various #neighbors  aggregation 

 Use local classifier f(ai) (e.g., SVM, kNN, …) 

to compute best value for yi 

 Repeat for each node Yi 

 Reconstruct feature vector ai  

 Update label to f(ai)   (hard assignment) 

 Until class labels stabilize or max # iterations 

Note: convergence not guaranteed 
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Iterative classification 

a1
t=1 

f(a2
t=0)=CH 

f(a1
t=1)=SH 

1 

2 
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Iterative classification 

a2
t=1 

f(a2
t=1)=CH 

f(a1
t=1)=SH 

1 

1 
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Gibbs sampling 

 Main idea: 

 Convert each node Yi to a flat vector ai 

 Use local classifier f(ai) to compute best value 

for yi 

 Repeat B times for each node Yi 

 Reconstruct feature vector ai  

 Update label to f(ai)   (hard assignment) 

 Repeat S times for each node Yi 

 Sample yi from f(ai) 

 Increase count c(i, yi) by 1 

 Assign to each Yi label 
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IC and GS challenges 
 Feature construction for local classifier f 

 f often needs fixed-length vector 

 choice of aggregation (avg, mode, count, …) 

 choice of relations (in-, out-links, both) 

 choice of neighbor attributes (all?, top-k confident?) 

 Local classifier f 

 requires training 

 choice of classifier (LR, NB, kNN, SVM, …) 

 Node ordering for updates (random, diversity based) 

 Convergence 

 Run time (many iterations for GS) 
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Collective classification inference 
 Exact inference is NP hard for arbitrary networks 

 Approximate inference techniques [in this tutorial]  

 Relational classifier 

 

 Iterative classification alg. (ICA) 

 

 Gibbs sampling IC 

 

 Loopy belief propagation 

 

Note: All the above are iterative 

Gilks et al. ‘96 

Yedidia et al. ‘00 

Neville&Jensen’00, Lu&Getoor’03, McDowell+’07 

Macskassy&Provost’03,07 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 177 



Relational Markov Nets 
 Undirected dependencies 

 Potentials on cliques of size 1 

 Potentials on cliques of size 2  

 (label-attribute) 

 (label-observed label) 

 (label-label) 

 

For pairwise  
RMNs max  
clique size is 2 
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pairwise Markov Random Field 

 For an assignment y to all unobserved Y, 

pMRF is associated with probability distr: 

Node labels as  
random variables 

compatibility  
potentials 
(label-label) 

prior belief 
(1-clique potentials) 

observed potentials 
(label-observed label) 
(label-attribute) 

“known” 
potential 
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pMRF interpretation 

 Defines a joint pdf of all unknown labels 

 P(y | x) is the probability of a given world y 

 Best label yi for Yi is the one with highest 

marginal probability 

 Computing one marginal probability P(Yi = yi) 

requires summing over exponential # terms 

 #P problem  approximate inference  

loopy belief propagation 
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Loopy belief propagation 
 Invented in 1982 [Pearl] to calculate marginals 

in Bayes nets. 

 Also used to estimate marginals (=beliefs), or 

most likely states (e.g. MAP) in MRFs 

 Iterative process in which neighbor variables 

“talk” to each other, passing messages 

 

 

 

 When consensus reached, calculate belief 

 “I (variable x1) believe      
you (variable x2) belong                                                                          

in these states with                                                                      
various likelihoods…” 
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Loopy belief propagation 

 

 

i 

2) Repeat for each node:  

3) When messages “stabilize”: 

j 

k 

k 

k 

1) Initialize all messages to 1 

details 
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m12(SH) = (0.0096*0.9+0.0216*0.1) / (m12(SH) + m12(CH)) ~0.35 

m12(CH) = (0.0096*0.1+0.0216*0.9) / (m12(SH) + m12(CH)) ~0.65  
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Loopy belief propagation 

Advantages: 

 Easy to program & parallelize 

 General: can apply to any graphical model w/ any 

form of potentials (higher order than pairwise) 

Challenges: 

 Convergence is not guaranteed (when to stop) 

 esp. if many closed loops 

 Potential functions  (parameters) 

 require training to estimate 

 learning by gradient-based optimization: 

convergence issues during training 
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Applications 

Fraud detection 

Spam detection 



Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 (1) Online auction fraud 

 (2) Accounting fraud 

 (3) Fake review spam 

 (4) Web spam  
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(1) Online auction fraud 

 Auction sites: attractive target for fraud 

 63% complaints to Federal Internet Crime 

Complaint Center in U.S. in 2006 

 Average loss per incident: = $385 

 Often non-delivery fraud: 

Chau et al. ’06 

$$$ 

Seller Buyer 
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Online auction fraud detection 

 Insufficient solution: 

 Look at individual features, geographic locations, 

login times, session history, etc. 

 

 Harder to fake: graph structure 

 Capture relationships between users 

 

 Q: How do fraudsters interact with other 

 users and among each other? 

   in addition to buy/sell relations, there is a 

      feedback mechanism 
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Feedback mechanism 

 Each user has a reputation score 

 Users rate each other via feedback 

 

 

 

 

 

 

 Q: How do fraudsters game the feedback 

 system? 

$$$ 

Reputation score:  

     70 + 1 = 71 

Reputation score:  

     15 - 1 = 14 
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Auction “roles” 

 Do they boost each                                       

other’s reputation?  

 

 

 They form near-bipartite                                   

cores (2 roles) 

     accomplice 

 trades w/ honest, looks legit 

     fraudster 
 trades w/ accomplice 

 fraud w/ honest 
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Detecting online fraud 

 How to find near-bipartite cores? How to find 

roles (honest, accomplice, fraudster)? 

 Use Belief Propagation!  

 How to set BP parameters (potentials)? 

 prior beliefs: prior knowledge, unbiased if none  

 compatibility potentials: by insight 
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BP in action 
Initialize prior beliefs of 

fraudsters to P(f)=1 

Initialize 

other 

nodes as 

unbiased 

At each iteration, for each 

node, compute messages to 

its neighbors 

Compute beliefs, 

use most likely state 

Continue till 

“convergence” 
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Computing beliefs  roles 

A 

C 

B 

E 

D 

P(honest) 
P(accomplice) 

P(fraudster) 
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(2) Accounting fraud 

 Problem: Given accounts and their 

transaction relations, find most risky ones 

Cash 
Accounts 
Payable 

Inventory 

Bad Debt 

Non-Trade 
A/R 

Accounts 
Receivable 

Revenue 
Orange Cty 

Revenue Los 
Angeles 

Revenue San 
Diego 

Revenue San 
Francisco 

Revenue 
Other 

McGlohon et al. ’09 
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Accounting fraud detection 

 Domain knowledge to flag certain nodes 

 

 Assume homophily (“guilt by association”) 

 

 

 Use belief propagation 

 2 states (risky R, normal NR) 

 final beliefs  end risk scores 

 

prior beliefs 

compatibility potentials 
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Social Network Analytic Risk Evaluation 
 
 Prior beliefs (noisy domain knowledge) 

 

 

 

 

 

 Compatibility potentials                                           

(by homophily) 

Many late 
postings 

Round-dollar 
entries 

Large number 
of returns 

Many entries 
reversed late in 

period 

f 

# Flags 
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Social Network Analytic Risk Evaluation 
 Before After 

False positive rate 

True 

positive 

rate 

SNARE 

Baseline (flags only) 

Focus on staff 
posting to A/R 

from headquarters 

Ignore, no 
corroborating 

evidence 

1380 accounts 

3820 transactions 
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(3) Fake review spam 

 Review sites: attractive target for spam 

 Often hype/defame spam 

 Paid spammers 
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Fake review spam detection 
 Behavioral analysis 

 individual features, geographic locations, login 

times, session history, etc. 

 Language analysis 

 use of superlatives, many self-referencing, rate of 

misspell, many agreement words, … 

 

 Harder to fake: graph structure 

 Capture relationships between                          

reviewers, reviews, stores 

 

[Jindal & Liu’08] 

[Ott et al.’11] 
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Graph-based detection 
[Wang et al. ’11] 

Reviewer r trustiness T(r) 

Honesty Hr 

Trustiness 
T(r) 
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Graph-based detection 

Store s reliability R(s) 

review v rating 
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Graph-based detection 

Review v honesty H(v) 
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Graph-based detection 
Reviewer r trustiness T(r) 

Store s reliability R(s) 

Review v honesty H(v) 
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Graph-based detection 

 Algorithm: iterate trustiness, reliability, and 

honesty scores in a mutual recursion 

 similar to Kleinberg’s HITS algorithm 

 non-linear relations 

 

 Challenges: 

 Convergence not guaranteed 

 Cannot use attribute info 

 Parameters: agreement time window ∆t, review 

similarity threshold (for dis/agreement)  
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Part III: Outline 
 Algorithms: relational learning 

 Collective classification 

 Relational inference 

 

 Applications: fraud and spam detection 

 Online auction fraud 

 Accounting fraud 

 Fake review spam 

 Web spam  
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(4) Web spam 

 Spam pages: pages designed to trick search 

engines to direct traffic to their websites 
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Web spam 

 Challenges: 

 pages are not independent 

 what features are relevant? 

 small training set 

 noisy labels (consensus is hard) 

 content very dynamic 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 208 



Web spam 

 Many graph-based solutions 

 TrustRank 

 SpamRank 

 Anti-trustRank 

 Propagating trust and distrust 

 Know your neighbors 

 Guilt-by-association 

 …  

 

[Gyöngyi et al. ’04] 

[Benczur et al. ’05] 

[Krishnan et al. ’06] 

[Wu et al. ’06] 

[Castillo et al. ’07] 

[Kang et al. ’11] 
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Web spam 

 Main idea: exploit homophily and reachability 
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TrustRank: combating web spam 

 Main steps:  

 Find seed set S of “good” pages 

(e.g. using oracle) 

 Compute trust scores by biased 

(personalized) PageRank from 

good pages 

 Intuition: spam pages are 

hardly reachable from 

trustworthy pages 

 Hard to acquire direct inlinks   

from good pages 

[Gyöngyi et al. ’04] 
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TrustRank mathematically 

 Remember PageRank score of a page p: 

 

 

 In closed form: 

 

 

 Personalized PageRank: 

 

damping factor Transition matrix 

1/|S| for S nodes of 
interest (seeds) 

details 
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SpamRank: link spam detection 

 Intuition: PageRank distribution of “good” set of 

supporters should be power law (as in entire Web) 

 Page v is a supporter of page i if: PPRi(v) > 0  

 For each page i 

 get PageRank scores of all supporters of i 

 test PageRank histogram for power law 

 calculate irregularity score s(i)   

 SpamRank  PPR(s) 

Advantage: no user labeling (as for TrustRank) 

[Benczur et al. ’05] 

i 
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“Know your neighbors” 

 Graph-based techniques can help improve 

feature-based classifiers 

 

 

 

 

 

 Graph features: reciprocity, assortativity, 

TrustRank, PageRank, … 

 Content features: fraction visible text, 

compression rate, entropy of trigrams, … 

[Castillo et al. ’07] 

Feature  
Extraction 

Classification Smoothing Propagation 

Stack Graphical 
Learning 

Clustering 
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Smoothing –clustering 
 Split graph into many clusters. (e.g. by METIS) 

 If majority of nodes in cluster are spam, then all 

pages in cluster are spam. 
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Smoothing –propagation 
 Propagate predictions using random walks. 

 PPR(s); s(i): spamicity score by baseline 

classifier (backward and/or forwards steps) 

L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 216 



Smoothing –stacked learning 

 Create additional features by combining 

predictions for related nodes 

 e.g., avg. spamicity score p of neighbors r(h) of h 

 

 similar to pRN classifier by Macskassy&Provost 

 can repeat, although 1-2 steps add most gain 

h 
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Tutorial Outline 
 Motivation, applications, challenges 

 Part I: Anomaly detection in static data 

 Overview: Outliers in clouds of points 

 Anomaly detection in graph data 

 Part II: Event detection in dynamic data 

 Overview: Change detection in time series 

 Event detection in graph sequences 

 Part III: Graph-based algorithms and apps 

 Algorithms: relational learning 

 Applications: fraud and spam detection 
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Conclusions 

 Graphs are powerful tools to detect  

 Anomalies 

 Events 

 Fraud/Spam  
  in complex real-world data (attributes,       

  (noisy) side information, weights, …) 

 Nature of the problem highly dependent on 

the application domain 

 Each problem formulation needs a 

different approach 
L. Akoglu & C. Faloutsos Anomaly detection in graph data (WSDM'13) 223 



Open challenges: research 

 Anomalies in dynamic graphs 

 dynamic attributed graphs (definitions, 

formulations, real-world scenarios) 

 temporal effects: node/edge history (not only 

updates) 

 Fraud/spam detection: system perspective 

 adversarial robustness  

 cost (to system in measurement , to adversary to 

fake, to user in exposure) 

 detection timeliness and other system design 

aspects; e.g. dynamicity, latency 
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Open challenges: practice 

 What makes the results better in practice? 

 better priors? 

 better parameter learning? 

 more data? 

 … 

 Graph construction 

 If no network, what to use to build one? 

 If one network,  

 more latent edges? (e.g. review similarity) 

 less edges? (e.g. domain knowledge) 

 If more than one network, how to exploit all? 
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Q & A 

  leman@cs.stonybrook.edu 

http://www.cs.stonybrook.edu/~leman/ 
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